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Abstract
Tensor networks are factorisations of high rank tensors into networks of lower rank

tensors and have primarily been used to analyse quantum many-body problems. Tensor
networks have seen a recent surge of interest in relation to supervised learning tasks with
a focus on image classification. In this work, we improve upon the matrix product state
(MPS) tensor networks that can operate on one-dimensional vectors to be useful for work-
ing with 2D and 3D medical images. We treat small image regions as orderless, squeeze
their spatial information into feature dimensions and then perform MPS operations on
these locally orderless regions. These local representations are then aggregated in a hier-
archical manner to retain global structure. The proposed locally orderless tensor network
(LoTeNet1) is compared with relevant methods on three datasets. The architecture of
LoTeNet is fixed in all experiments and we show it requires lesser computational resources
to attain performance on par or superior to the compared methods.

Keywords: Tensor networks, Image classification, histopathology, thoracic CT, MRI

1. Introduction

Support vector machines (SVMs) and other kernel based methods ushered in a new wave of
supervised learning methods based on the fundamental insight that challenging tasks in low
dimensions may become easier when the data is lifted to higher dimensional spaces (Boser
et al., 1992; Cortes and Vapnik, 1995; Hofmann et al., 2008), as illustrated in Figure 1.
These methods, however, become prohibitive when dealing with massive datasets in high
dimensional feature spaces as their space complexity grows at least quadratically with the
number of data points (Bordes et al., 2005; Novikov et al., 2016). Further, SVMs are also
known to be sensitive to the specific choice of the kernel parameters and as a consequence
the decision boundaries learnt are prone to over-fitting (Burges, 1998; Bordes et al., 2005).
These factors have discouraged their successful adoption to tasks involving large datasets
comprising high resolution images where deep learning based methods have shown to fare
better (Litjens et al., 2017; Liu et al., 2017).

Tensor networks, also known as tensor trains, offer a different and more efficient frame-
work to dealing with such high dimensional spaces. Fundamentally, tensor networks are

1. Source code is available here: https://github.com/raghavian/LoTeNet_pytorch/
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factorisations of higher order 2 tensors into networks of lower order tensors (Fannes et al.,
1992; Oseledets, 2011; Bridgeman and Chubb, 2017). The number of parameters needed
to specify an order-N tensor using tensor networks can be drastically reduced, from ex-
ponential to polynomial dependence on N (Perez-Garcia et al., 2006). This massive re-
duction in number of parameters using tensor networks has been predominantly applied
to better understand quantum wave functions (Shi et al., 2006). They have also seen ap-
plications in data compression (Cichocki et al., 2016), and recently to better understand
the expressive power of deep learning models (Cohen et al., 2016; Glasser et al., 2019).

Figure 1: Data that is only non-linearly sep-
arable in lower dimensions can become lin-
early separable in higher dimensions, illus-
trated here for a simple case of 2-dimensional
data that becomes linearly separable when
lifted into 3-dimensions. This is the under-
lying principle in kernel based methods and
tensor networks which learn linear decision
boundaries in high dimensional spaces.

Recently, there has been an increas-
ing interest in using tensor networks for
supervised learning, specifically focused
on image classification tasks (Stoudenmire
and Schwab, 2016; Klus and Gelß, 2019;
Efthymiou et al., 2019; Sun et al., 2020).
These methods rely on transforming two
dimensional input images (order-2 tensors)
into one dimensional vectors (order-1 ten-
sors) to obtain linear decision boundaries in
high dimensional spaces. Due to the con-
straint of flattening to obtain vector inputs
these methods are constrained to work with
images of small spatial resolution (12x12 px
to 28x28 px). Several improved flattening
strategies have been attempted to maximize
the retained spatial correlation between pix-
els as the correlation declines exponentially
causing loss of information in larger im-
ages (Stoudenmire and Schwab, 2016; Efthymiou et al., 2019; Cheng et al., 2019; Sagan,
2012). For small enough images (like in MNIST 3 or Fashion MNIST 4 datasets) there is
some residual correlation in the flattened images which can be exploited by lifting the vector
input to higher dimensions using tensor networks. This might not be effective in the case of
images with higher spatial resolution. Further, the information lost by flattening of images
in medical imaging tasks can be critical as the predicted decisions could be dependent on
the global structure of the image.

In this work, we present a tensor network based model adapted for classifying two- and
three-dimensional medical images which can be of higher spatial resolution. The method
presented here relies on lifting small image (slice or volume) patches to higher dimensions,
performing tensor network operations on them to obtain intermediate representations which
are then hierarchically aggregated to predict the final classification decisions. These small,
local regions can be treated as being locally orderless drawing parallels to the classical theory
of locally orderless images in Koenderink and Van Doorn (1999). As with locally orderless

2. Order of tensors are also referred to as ranks. In this work we adhere to using order.
3. http://yann.lecun.com/exdb/mnist/
4. https://github.com/zalandoresearch/fashion-mnist
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image analysis, we propose to extract useful representations of small image regions in higher
dimensions and aggregate them in a hierarchical manner resulting in our locally orderless
tensor network (LoTeNet) model. The proposed LoTeNet model is used to learn decision
functions in high dimensional spaces in a supervised learning set-up and is optimized end-to-
end by backpropagating the error signal through the tensor network. The LoTeNet model
builds on an earlier work that adapted tensor networks for supervised machine learning
in Stoudenmire and Schwab (2016), and also has similarities to the tensor network model
in Efthymiou et al. (2019). Specifically, as with both these models, the LoTeNet model uses
the matrix product state (MPS) tensor networks (Perez-Garcia et al., 2006) to approximate
linear decisions in a supervised learning set-up. The proposed modifications – comprising
the use of the hierarchical aggregation of patch-level representations of image data using
tensor networks – yield a large computational advantage to LoTeNet making it amenable to
be used in medical image analysis.

The performance of the LoTeNet model is demonstrated using experiments on classifying
three medical imaging datasets: 2D histopathology images in PCam dataset (Veeling et al.,
2018), 2D thoracic computed tomography (CT) slices from LIDC-IDRI dataset (Armato III
et al., 2004) and 3D magnetric resonance imaging (MRI) from the OASIS dataset (Marcus
et al., 2007). These experiments show that the LoTeNet model fares comparably to relevant
state-of-the-art deep learning methods requiring the tuning of a single model hyperparameter
while utilising only a fraction of the graphics processing unit (GPU) memory when compared
to their convolutional neural network (CNN) counterparts. The work presented here is an
extension of an earlier version of the method which operated on two-dimensional data and
is published as a conference publication (Selvan and Dam, 2020).
The key contributions in this work are:

1. A novel tensor network based model for classifying 2D and 3D medical image data
2. Extending supervised learning with tensor networks to images of higher resolution
3. Validation of the method on three public datasets and comparison to relevant methods
4. Demonstrating competitive performance using little GPU resources
5. Conceptual connections of tensor networks with deep neural networks

In the remainder of this manuscript we present the basics of tensor notation, tensor network
fundamentals and formulate the supervised image classification task in Section 2. The
components of the proposed LoTeNet model and the final model itself are presented in
Section 3. The proposed model is discussed in relation to existing literature in Section 4.
Experiments on the three datasets and results are presented in Section 5, along with the
discussions and future research directions in Section 6, and present overall conclusions from
this work in Section 7.

2. Background and Problem Formulation

We introduce key concepts pertaining the use and optimisation of tensor networks in this
section which will be put together to describe the proposed method in the following sections.

2.1 Tensor Network Notations

Tensor networks and operations on them are described using an intuitive graphical notation,
introduced in Penrose (1971). Figure 2 (left) shows the commonly used notations for a scalar
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Figure 2: Left: Tensor notation depicting a scalar S, vector V i, matrix M ij and a general
order-3 tensor T ijk. Center: Tensor notation for matrix multiplication or tensor contraction,
which are used extensively in the matrix product state networks used in this work. We
adhere to the convention that the contracted indices are written as subscripts. Right: Tensor
notation for trace of product of two matrices.

S, vector V i, matrix M ij and a general order-3 tensor T ijk. The number of dimensions of
a tensor is captured by the number of edges emanating from the nodes denoted by the edge
indices. For instance, the vector V i is an order-1 tensor indicated by the edge with index i
and an order-3 tensor has three indices (i, j, k) depicted by the three edges, and so on.

Tensor notations can also be used to capture operations on higher-order tensors suc-
cinctly as shown in Figure 2 (center) where matrix product is depicted, which is also known
as tensor contraction. The edge between the tensor nodes Xi

j and Y
k
j is the dimension sub-

sumed in matrix multiplication resulting in the matrix Zik. More thorough introduction to
tensor notations can be found in Bridgeman and Chubb (2017).

2.2 Linear Model in Exponentially High Dimensions

A linear model in a sufficiently high dimensional space can be very powerful (Novikov et al.,
2016). In SVMs, this is accomplished by the implicit mapping of the input data into an
infinite dimensional space using radial basis function kernels (Hofmann et al., 2008). In this
section, we describe the procedure followed in recent tensor network based works, including
in ours, to map the input data into an exponentially high dimensional space.

Consider an input vector x ∈ [0, 1]N , which can be obtained by flattening a 2D or 3D
image with N pixels with intensity values that are normalized in the interval [0, 1]. A
commonly used feature map for tensor networks is obtained from the tensor product of
pixel-wise feature maps (Stoudenmire and Schwab, 2016):

Φi1,i2,...iN (x) = φi1(x1)⊗ φi2(x2)⊗ · · ·φiN (xN ) (1)

where the local feature map acting on a pixel xj is indicated by φij (·). The indices ij run
from 1 to d where d is the dimension of the local feature map. The feature maps are usually
simple non-linear functions restricted to have unit norm such that the joint feature map
in Eq. (1) also has unit norm. A widely used local feature map with d = 2 inspired from
quantum wave function analysis is (Stoudenmire and Schwab, 2016) is shown in (2), and a
simpler local feature map from Efthymiou et al. (2019) in Eq. (3) with similar properties
(but non-unit norm):

φij (xj) = [cos
(π

2
xj

)
, sin

(π
2
xj

)
] (2)

φij (xj) = [xj , 1− xj ]. (3)
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The joint feature map Φ(x) in Eq. (1) is an order-N tensor due to tensor product of theN
order-1 local feature maps of dimension d in Eq. (2). The joint feature map Φ(x) can be seen
as mapping each image to a vector in the dN dimensional feature space (Stoudenmire and
Schwab, 2016). For multi-channel inputs, such as RGB images or other imaging modalities,
with C input channels the local feature map can be applied to each channel separately such
that the resulting space is of dimension (d · C)N (Efthymiou et al., 2019).

Given this high dimensional joint feature map Φ(x) of Eq. (1) for the input data x, a
linear decision rule for a multi-class classification task can be formulated as:

f(x) = arg max
m

fm(x), (4)

fm(x) = Wm · Φ(x). (5)

where m = [0, 1, . . .M − 1] are the M classes, and the weight tensor Wm is of order-(N + 1)
with the output tensor index m.

The tensor notation representation of the linear model of Eq. (5) is shown in Figure 3
(Step 1) where the first column of gray nodes are the individual pixel feature maps of order-1
with feature dimension d. The local feature maps are connected to the order-(N + 1) weight
tensor Wm along N edges with one edge for output of dimension M marked with index m.

The order-(N+1) weight tensor Wm results in a total of M · dN weight elements. Even
for a relatively small gray scale image, say of size 100 × 100, the total number of weight
elements in Wm can be massive: 2 · 210000 ≈ 103010 which is exponentially more than the
number of atoms in the universe5! The dN lift in quantum physics is sometimes seen as
a convenient illusion (Poulin et al., 2011; Orús, 2014) as the most interesting behavior of
systems can be captured with fewer degrees of freedom in this high dimensional space. This
is analogous to using fewer than input feature dimensions after dimensionality reduction
operations. In the next section we will see how tensor networks can access useful sub-spaces
represented by such high dimensional tensors, with parameters that grow linearly with N
instead of growing exponentially with N .

2.3 Matrix Product State (MPS)

Consider two vectors, T i and U j with indices i and j respectively. The tensor product 6

of these two vectors yields an order-2 tensor or a matrix Xij . The matrix product state
(MPS) (Perez-Garcia et al., 2006) is a type of tensor network that expands on this notion of
tensor products allowing the factorization of an order-N tensor (with N edges) into a chain
of lower-order tensors. Specifically, the MPS tensor network can factorise an order-N tensor
with a chain of order-3 (with three edges) except on the borders where they are of order-2,
as shown in Figure 3 (Step 2). Consider a tensor of order-N with indices ii, i2, . . . iN , using
MPS it can be approximated using lower-order tensors as

Wm,i1,i2,...iN =
∑

α1,α2,...αN

Ai1α1
Ai2α1α2

Ai3α2α3
. . . A

m,ij
αjαj+1 . . . A

iN
αN
, (6)

where Aij are the lower-order tensors. The subscript indices αj are virtual indices that are
contracted and are of dimension β referred as the bond dimension. The components of these

5. https://en.wikipedia.org/wiki/Observable_universe
6. Note that the tensor product of two order-1 tensors is the same as the vector outer product.
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Figure 3: (Step 1) Linear model of Eq. (5) in tensor notation. (Step 2) MPS approximation
of the linear model. (Step 3) Series of tensor contractions done with MPS to compute
Wm · Φ(x) in Eq. (5)

Figure 4: (a): Illustration of MPS factorisation of an order-5 tensor W 43253 into five
tensors of lower order (up to order-3 ) based on Equation (6). The bond dimension in
this factorisation is β = 2 seen as the subscript indices which are contracted. The tensor
W 43253 has 4 × 3 × 2 × 5 × 3 = 360 parameters whereas the MPS approximation requires
8 + 12 + 8 + 20 + 6 = 54 parameters. (b): MPS approximation of W 43253 in tensor notation.

intermediate lower-order tensors Aij form the tunable parameters of the MPS approxima-
tion. Note that any N dimensional tensor can be represented exactly using an MPS tensor
network if β = dN/2. In most applications, however, β is fixed to a small value or allowed
to adapt dynamically when the MPS tensor network is used to approximate higher-order
tensors (Perez-Garcia et al., 2006; Miller, 2019).

One of the drawbacks of using MPS tensor networks is that they operate along one
dimension (as a chain). This is the primary reason that two dimensional image data has to
be first flattened to a vector when working with tensor networks such as the MPS. Tensor
networks that can work on arbitrary graphs, which might be more suitable for image data
like the projected entangled pair states (PEPS) (Verstraete and Cirac, 2004), are not as well
understood and do not yet have efficient algorithms like the MPS.
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Dot product with MPS: The decision function in Eq. (5) comprising the dot product
of the order-(N+1) weight tensor Wm and the joint feature map Φ(x) in Eq. (1) can be
efficiently computed using the MPS approximation in Eq. (6), depicted in Figure 3 (Step 2).
The order in which tensor contractions are performed can yield a computationally efficient
algorithm. The original MPS algorithm (Perez-Garcia et al., 2006) starts from one of the
ends, contracts a pair of tensors to obtain a new tensor which is then contracted with the
next tensor and this process is repeated until the output tensor is reached. The cost of this
algorithm scales with {N ·β3 ·d} when compared to the cost without the MPS approximation
which scales with dN . In this work, we use the MPS implementation in Miller (2019) which
performs parallel contraction of the horizontal edges and then proceeds to contract them
vertically as depicted in Figure 3 (Step 3). The MPS approximation also reduces the number
of tunable parameters by an exponential factor, from {M · dN} to {M · d ·N · β2}.

3. Methods

The primary contribution in this work is a tensor network based image classification model
that can handle high resolution images of both two and three spatial dimensions. Several
recent tensor network models for supervised image classification tasks operate on small
planar images and flatten them into vectors with different raveling strategies at the expense
of global image structure (Stoudenmire and Schwab, 2016; Han et al., 2018; Efthymiou et al.,
2019). In contrast to these methods, we only flatten small regions of the images which can
be assumed to be locally orderless (Koenderink and Van Doorn, 1999) and obtain expressive
representations of local image regions using tensor contractions in high dimensional spaces.
We process these locally orderless image regions in a hierarchical fashion using layers of MPS
blocks in the final model, which we call the locally orderless tensor network (LoTeNet), shown
in Figure 6. We next describe the proposed LoTeNet model in detail.

3.1 Squeeze operation
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Figure 5: Squeeze operation with stride k = 3
which reshapes a 6× 6× 1 image patch into a
vector of size 4 with feature dimension d=9.

The proposed LoTeNet model operates on
small image regions and aggregates them
with MPS operations at multiple levels.
These small image patches at each level are
created using the squeeze operation in two
steps, as illustrated in Figure 5 for an order-
2 tensor i.e an image with two spatial dimen-
sions.

The input images are converted into vec-
tors with inflated feature dimensions by ap-
plying kernels of stride k along each of the
spatial dimensions. Consider an input im-
age Xhij with S = 3 spatial dimensions
(height:H, width:V, depth:D), N pixels and
C = d channels as feature dimension: Xhij ∈ RH×V×D×C . In the first step, input image is
reshaped into smaller patches controlled by the stride k: Xhij ∈ R(H/k)×(V/k)×(D/k)×d such
that the feature dimension increases to d = C ·kS . The stride of the kernel k decides the ex-
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tent of reduction in spatial dimensions and the corresponding increase in feature dimension
of the squeezed image.

In the second step, the reshaped image patches with inflated feature dimensions are
flattened from order-S tensors to order-1 tensors, resulting in Xh ≡ x ∈ R(N/kS) with
d = C · kS . This flattening operation provides spatial information in the feature dimension
to LoTeNet, thus retaining additional image level structure when compared to flattening
the entire image into a single vector x ∈ RN with d = C channels (Efthymiou et al., 2019).
Further, the increase in the feature dimension d = C · kS makes the tensor network more
expressive as it increases the dimensionality of the feature space (Stoudenmire and Schwab,
2016).

The transformations in dimensions due to the squeeze operation parameterised by the
stride k, ψ(·; k), are summarised below:

ψ(·; k) : {Xhij ∈ RH×V×D×d, d = C} −→ {x ∈ R(N/kS)×d, d = C · kS}. (7)

The squeeze operation can also be treated as a local feature map due to the increase in
feature dimensions, similar to the more formal pixel level feature maps mentioned in Eq. (2)
and Eq. (3), operating on image patches instead of individual pixels. Finally note that the
squeeze kernel stride can be different at each level l of the model denoted kl.

In the current formulation, the images are assumed to be rectangular in each plane. As
the main purpose of the squeeze operation is to increase the feature dimensions by flattening
small local neighbourhoods, this can be achieved by reshaping any small, non-square region
of the image into a vector of fixed feature dimension. The simplest strategy to work with
non-square (circular images for instance) would be to pad the regions around the borders
to make them rectangular. Another approach could be to partition non-square images into
cells using Voronoi tesselations (Du et al., 1999) and squeezing these cells into vectors.

3.2 Locally orderless tensor network (LoTeNet)

An overview of the proposed LoTeNet model is shown in Figure 6 for an image with two
spatial dimensions i.e with S = 2. The number of squeezed vectors and the corresponding
MPS blocks at each layer of the proposed model are also indicated in Figure 6.

The LoTeNet model comprises of layers of MPS blocks interleaved with squeeze opera-
tions without any non-linear components. The input to the first layer in Figure 6 is the full
resolution input image with N pixels, shown with grids marking the k × k patches which
are then squeezed to obtain N1 = N/kS vectors with d = C · kS . Each of these squeezed
patches are input into MPS blocks which contract the d = C · kS vectors to output a vector
with dimension d = ν. MPS blocks operating on squeezed image patches can be interpreted
as summarising them with a vector of size ν using a linear model in a higher dimensional
feature space. In LoTeNet, we set ν to be the same as the MPS bond dimension β, so that
there is only a single hyperparameter to be tuned.

The output vectors from all Nl MPS blocks at a given layer l are reshaped back into
the S dimensional image space. However, due to the MPS contractions, these intermediate
image space representations will be of lower resolution as indicated by the smaller image
with fewer patches in Figure 6. This is analogous to obtaining an average pooled version
of the intermediate feature maps in traditional CNNs. The intermediate images of lower
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Figure 6: The proposed locally orderless tensor network (LoTeNet) with L layers. Each
layer l consists of several MPS blocks based on the squeeze kernel stride kl at that layer.
The squeeze operation is as described in Figure 5. The final MPS block outputs theM class
predictions shown as the edge with index m.

resolution formed at layer l are further squeezed and contracted in the subsequent layers of
the model. This process is continued for L − 1 layers and the final MPS block acting as
layer L contracts the output vector from layer L− 1 to predict the decisions in Eq. (5). The
weights of all the MPS blocks in each of the L layers are the model parameters which are
tuned in a supervised setting as described next.

3.3 Model Optimization

We view the sequence of MPS contractions in successive layers of our model as forward
propagation and rely on automatic differentiation to compute the backward computation
graph (Efthymiou et al., 2019). Torch MPS package (Miller, 2019) is used to implement
MPS blocks and trained in PyTorch (Paszke et al., 2019) to learn the model parameters
from training data in an end-to-end fashion. These parameters are analogous to the weights
of neural network layers and can be updated in a similar iterative manner by backpropagating
a relevant error signal computed between the model predictions and the training labels.

We minimize the cross-entropy loss between the true label yi ∈ [0, . . . ,M − 1] for each
image xi ∈ D and the predicted label f (yi)(xi) in the training set D:

L(f (yi)(xi)) = −
∑

(xi,yi)∈D

log
exp f (yi)(xi)∑M−1
m=0 exp f (m)(xi)

= −
∑

(xi,yi)∈D

log
(
σ(f (yi)(xi))

)
(8)

where σ(·) is the softmax operation used to obtain normalized scores that can be interpreted
as the predicted class probabilities. For binary classes, the loss in Eq. (8) reduces to the
binary cross entropy and output dimensionM = 1 can be used with the sigmoid non-linearity
to obtain probabilistic predictions in [0, 1].

9
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Figure 7: Two sample images from each of the three datasets a) PCam (Veeling et al., 2018),
b) LIDC (Armato III et al., 2004) and c) OASIS (Marcus et al., 2007).

4. Related work

Key ideas in the proposed locally orderless tensor network are related to several existing
methods in the literature. The closest of them is the tensor network model in Efthymiou
et al. (2019) which in turn was based on the work in Stoudenmire and Schwab (2016).
The primary difference of LoTeNet compared to Efthymiou et al. (2019) is in its ability to
handle high resolution 2D/3D images without losing spatial correlation between pixels. This
capability is incorporated with strategies from image analysis such as the interpretation of
small regions to be orderless (Koenderink and Van Doorn, 1999). Further, the multi-layered
approach used in LoTeNet has similarities with the multi-scale analysis of images (Lindeberg,
2007).

The squeeze operation described in Section 3.1 serves dual purposes: to move spatial
information into feature dimension and to increase the feature dimension. This is based
on similar operations performed in normalizing flow literature to provide additional spatial
context via feature dimensions such as in Dinh et al. (2017). The operation of stacking pixels
into feature dimension is also similar to the im2col operations used to transform convolution
into multiplications for improving efficiency of deep learning operations (Chetlur et al.,
2014). Recently, in Blendowski and Heinrich (2020), the im2col operation was also used as
a preprocessing step with differentiable decision trees such as random ferns (Ozuysal et al.,
2009). The squeeze operation can also been as the inverse of the pixel shuffle operation
introduced in Shi et al. (2016) where the feature maps are interleaved into spatial dimension
to perform sub-pixel convolution.

5. Data and Experiments

5.1 Data

We report experiments on three public datasets for the task of binary classification from 2D
histopathology slides, 2D thoracic computed tomography (CT) and 3D T1-weighted MRI
scans.
PCam Dataset: The PatchCamelyon (PCam) dataset is a binary histopathology image
classification dataset introduced in Veeling et al. (2018). Image patches of size 96×96 px are
extracted from the Camelyon16 Challenge dataset (Bejnordi et al., 2017) with positive label
indicating the presence of at least one pixel of tumour tissue in the central 32×32 px region
and a negative label indicating absence of tumour, as shown in Figure 7(a). In this work,
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a modified PCam dataset from the Kaggle challenge7 is used that removes duplicate image
patches included in the original dataset. This dataset consists of about 220, 000 patches for
training and an independent test set of about 57, 500 patches is provided for evaluating the
models. Data augmentation is performed during training with 0.5 probability comprising of
rotation, horizontal and vertical flips.
LIDC Dataset: The LIDC-IDRI datatset comprises of 1018 thoracic CT images with le-
sions annotated by four radiologists (Armato III et al., 2004). We use the 128 × 128 px
2D slices from Knegt (2018) (shown in Figure 7 (b)) yielding a total of 15, 096 patches.
The segmentation masks from the four raters are transformed to binary labels indicating
the presence (if two or more radiologists marked a tumour) or absence of tumours (if less
than two raters marked tumours). These binary labels capture a majority voting among
the radiologists. The dataset is split into 60 : 20 : 20 splits for training, validation and a
hold-out test set.
OASIS Dataset: The OASIS dataset consists of T1-weighted MRI scans of 416 subjects
aged between 18 to 96 years (Marcus et al., 2007). The scans are graded with clinical
dementia rating (CDR) into four classes: non-demented=0, very mild dementia=0.5, mild
dementia=1.0, moderate dementia=2.0. We create an Alzheimer’s disease classification
dataset according to Wen et al. (2020) with scans of all subjects above 60 years resulting
in a dataset with 155 subjects. Binary labels are extracted from the CDR scores: cogni-
tively normal (CN) if CDR=0 and Alzheimer’s disease (AD) if CDR>0, yielding 82:73 split
between CN and AD cases. The MRI scans are preprocessed using the extensive pipeline
described in Wen et al. (2020) comprising bias field correction, non-linear registration and
skull stripping using the ClincaDL package8. After preprocessing we obtain volumes of size
128x128x128 voxels (Figure 7-c).

5.2 Experiments and Results

5.2.1 Implementation

The model is implemented in PyTorch (Paszke et al., 2019) based on the Torch MPS pack-
age (Miller, 2019). The architecture of LoTeNet model is kept fixed across all the datasets.
The proposed LoTeNet model is evaluated with L = 4 layers, squeeze kernel of size kl = 2
except for the input layer where k1 = 8 in order to reduce the number of MPS blocks in the
first layer. The most critical hyperparameter of LoTeNet is its bond dimension β; it was
set to β = 5 obtained from the range [2, 3 . . . 20] based on the performance on the PCam
validation set. We set the virtual dimension ν to be the same as the bond dimension. Note
that increasing the depth in LoTeNet does not translate to obtaining more complex deci-
sions (like in neural networks) as LoTeNet is a linear model. Number of layers are controlled
by the kernel stride and primarily result in reduced computation cost (Selvan et al., 2020).
Finally, to keep the number of tunable hyperparameters lower, we also do not optimize β
and L jointly which would yield a model similar to an adaptive MPS (Stoudenmire and
Schwab, 2016; Miller, 2019)

We use the Adam optimizer (Kingma and Ba, 2014) with a learning rate of 5×10−4. We
use a batch size of 512 for experiments on the PCam and LIDC datasets, and a batch size

7. https://www.kaggle.com/c/histopathologic-cancer-detection
8. https://clinicadl.readthedocs.io/en/latest/
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Table 1: Performance comparison on PCam dataset (left) and LIDC dataset (right). For all
models, we specify the GPU memory utilisation in gigabytes. Best AUC across all models
is shown in boldface.

PCam Models GPU(GB) AUC

Rotation Eq-CNN 11.0 0.963
Densenet 10.5 0.962
LoTeNet (ours) 0.8 0.943
Tensor Net-X (β = 10) 5.2 0.908

LIDC Models GPU(GB) AUC

LoTeNet (ours) 0.7 0.874
Tensor Net-X (β = 10) 4.5 0.847
Densenet 10.5 0.829
Tensor Net-X (β = 5) 1.5 0.823

of 4 for the OASIS dataset. We incorporate batch normalisation (Ioffe and Szegedy, 2015)
after each layer in all the models and we observed this resulted in faster and more robust
convergence. All models were assumed to have converged if there was no improvement
in validation accuracy over 10 consecutive epochs and the model with the best validation
performance was used to predict on the test set. All experiments were run on a single Tesla
K80 GPU with 12 GB memory. The development and training of all models (including
baselines) in this work is estimated to produce 14.1 kg of CO2eq, equivalent to 120.1 km
travelled by car as measured by Carbontracker 9 (Anthony et al., 2020).

5.2.2 Experiments on 2D data

PCam models: Performance of the LoTeNet model is compared to the rotation equiv-
ariant CNNs in (Veeling et al., 2018) which is also state-of-the-art for the PCam dataset.
Additionally, we compare to the single layer MPS model with local feature map of the form
in Eq. (3) with β = 10 from Efthymiou et al. (2019) reported here as Tensor Net-X and
to Densenet (Huang et al., 2017) with 4 layers and a growth rate of 12. We compare the
binary classification performance of the models using the area under the ROC curve (AUC)
as it is not sensitive to arbitrary decision thresholds. The performance metrics are shown
in Table 1 (left) along with the maximum GPU memory utilisation for each of the models.
We observe the AUC on the test set attained by LoTeNet model (0.943) is comparable to
the Rotation Eq. CNN (0.963) and Densenet models (0.962) on the PCam dataset with a
drastic reduction in the maximum GPU memory utilisation; a mere 0.8 GB when compared
to upto 11 GB for the Rotation Eq.CNN 10 and 10.5 GB for Densenet. We also notice a
considerable improvement when compared to Tensor Net-X in the attained AUC (0.908).
LIDC models: Similar to the PCam dataset, performance of LoTeNet model is compared
using AUC and maximum GPU memory utilisation, and are reported in Table 1 (right).
We compare to Densenet and Tensor Net-X with two bond dimensions (β = 5, 10) to high-
light the influence of the bond dimension. LoTeNet model fares better than the compared
models with an AUC of 0.874 whereas the Densenet model achieves 0.829 and Tensor Net-X
achieves 0.847 (β = 10) and 0.823 (β = 5). The GPU memory utlisation follows a similar
trend as with the PCam models with LoTeNet requiring only 0.7 GB.

9. https://github.com/lfwa/carbontracker/
10. In Veeling et al. (2018) the authors used 4x12GB GPUs which was confirmed to R.Selvan by B.Veeling.
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Table 2: Performance comparison on OASIS dataset with comparing methods using 3D and
2D inputs. The performance is reported as balanced accuracy (BA) averaged over 5-fold
cross validation. Number of parameters, maximum GPU utilization (GPU) and computation
time per training epoch (t) for all methods are also reported.

OASIS Models Input # Param. GPU (GB) t (s) Average BA

LoTeNet (ours) 3D 52M 2.1 45.3 0.71± 0.09
Subject-level CNN 3D 1M 8.8 8.7 0.67± 0.08
CNN Baseline 3D 6.4M 11.5 12.8 0.64± 0.05
MLP Baseline 3D 78M 4.5 4.1 0.63± 0.03
Densenet 2D 0.2M 10.5 80.1 0.67± 0.04
LoTeNet (ours) 2D 0.4M 0.7 81.3 0.65± 0.03

5.2.3 Experiments on 3D data

LoTeNet used in the 3D experiments is identical to the one used in 2D experiments except
for the local feature map. For the 3D experiments, we do not apply the local feature map in
Eq. (2) but instead rely on the increase in feature dimension due to the squeeze operation
in Eq. (7). This reduces the number of parameters of the LoTeNet model and the risk of
overfitting to the limited data in the OASIS dataset.

The experimental set-up closely follows from Wen et al. (2020) and we use 5-fold cross
validation to report the balanced accuracy on each of the test folds. Balanced accuracy (BA)
is binary accuracy normalised by the class skew and helps when the classes are imbalanced.
We reimplemented the subject-level 3D CNN used in Wen et al. (2020) as one of the com-
pared methods. The subject-level CNN comprises 5 layers of 3D CNN with an initial feature
map of 8, max pooling and rectified linear units (ReLU) with doubling of feature maps after
each layer, and an additional three linear layers with ReLUs to output the final predictions.
We also report two other baseline models based on 3D CNN and a multi-layered perceptron
(MLP) model. The CNN baseline model is similar to the subject-level CNN but has an
initial feature map size of 32. The MLP baseline has four layers to match the LoTeNet
model, and ReLU non-linear activation function.

Table 2 summarises the performance of LoTeNet along with the compared methods for
two types of inputs. As LoTeNet is agnostic to the dimensionality of the input image due to
the squeeze operations, we demonstrate the performance on volume data (3D) and also on
19,840 slices extracted along the z-axis (2D) from the volume data. For the 2D experiments
we ensure there is no data leakage by creating folds at subject level. The balanced accuracy
across five test folds are shown and we see a clear improvement (0.71±0.09) for the 3D case
compared to subject-level CNN model (0.67±0.08). LoTeNet model has a lower score in the
2D case, indicating the model is able to extract more global information from the volume
data than from 2D slices. Additionally, we report the number of parameters, maximum
GPU utilisation and time per training epoch for all the methods. To show the influence of
the number of parameters, we compare to a large MLP baseline model with 78M parameters
and observe this increase does not necessarily improve the baseline model’s performance.
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6. Discussion

In this section, we focus on discussing high level trends observed with experiments reported
in Section 5.2, conceptual connections to other methods, and point out possible directions
for future work.

6.1 Comparison with tensor network models

The proposed LoTeNet model is related to the tensor network models used for supervised
learning tasks, such as the ones in Stoudenmire and Schwab (2016); Efthymiou et al. (2019).
In Stoudenmire and Schwab (2016), the parameters of the tensor network are learned from
data using density matrix renormalization group (DMRG) algorithm (McCulloch, 2007),
whereas in LoTeNet we use automatic differentiation based on the implementation in Miller
(2019) similar to Efthymiou et al. (2019) to optimise the parameters of the model in Eq. (6).

The proposed LoTeNet model also improves upon the computation cost of approximat-
ing linear decisions compared to other tensor network models such as in Efthymiou et al.
(2019). Consider the computation cost of approximating the linear decision in Eq. (5) for an
input image with N pixels of d features with a bond dimension β. For the tensor network
in Efthymiou et al. (2019) it is O

(
N · d · β2

)
. For LoTeNet, the computation cost reduces

exponentially with the number of layers used: O
(
N
k2·L
· L · k2 · d · β2

)
. The spatial resolution

of the input image is reduced with successive layers in LoTeNet (Figure 6) captured as the
k2·L term in the denominator. The cost of performing MPS operations on patches of size
k × k in L layers is the additional L · k2 term in the numerator. However, for L ≥ 2 and
k > 1, the exponential reduction in computation cost with L can translate into consider-
able computational advantage when processing high resolution medical images. Further, the
computation cost of LoTeNet can be reduced without noticeable degradation in performance
by sharing MPS in each layer across all patches (Selvan et al., 2020).

6.2 On Performance
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Figure 8: Influence of varying the bond dimen-
sions, β on the LIDC dataset. Note the y-axis
is between [0.8-1.0] for better visualisation.

The performance of LoTeNet across the
three datasets is on par with, or superior,
to the other methods as reported in Ta-
bles 1 and 2. This robustness across tasks
is remarkable because the LoTeNet archi-
tecture is fixed across the tasks. This be-
haviour could be attributed to the single
model hyperparameter – bond dimension,
β – which is fixed (β = 5) across all ex-
periments. Recollect that the bond dimen-
sion controls the quality of MPS approxi-
mations of the corresponding operations in
high dimensional spaces as described in Sec-
tion 2.3. Consistent with the reporting in
earlier works (Efthymiou et al., 2019), we
also find that the value of β after a specific
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value does not affect the model’s performance. This is illustrated in Figure 8, where we
show the sensitivity of the validation set performance on LIDC dataset for different bond
dimensions. This is a desirable feature as the models can be expected to yield comparable
performance when applied to different datasets without entailing dataset specific cost of
elaborate architecture search. Additionally, this robustness could also be attributed to more
efficient computation of massive number of parameters in LoTeNet resulting in generalised
decision rules, as reported in Table 2 where we notice that the number of parameters in
LoTeNet are higher than other methods (except MLP baseline).

In Tables 1 and 2, we report the GPU memory requirement for each of the models.
LoTeNet requires only a fraction of the GPU memory utilised by the corresponding baseline
methods, including the Densenet (Huang et al., 2017) or Rotation Eq-CNN models (Veeling
et al., 2018). One reason for this drastic reduction in GPU memory utilisation is because
tensor networks do not maintain massive intermediate feature maps. This behaviour is
similar to feedforward neural networks and unlike CNNs which use a large chunk of GPU
memory mainly to store intermediate feature maps (Rhu et al., 2016). Further, as LoTeNet
is based on contracting input data into smaller tensors in a hierarchical manner the memory
consumption with successive contracted layers does not increase. This can be an impor-
tant feature in medical imaging applications as larger images and larger batch sizes can be
processed without compromising the quality of the learned decision rules.

6.3 Choice of local feature maps

The local feature maps in Equations (2) and (3) are simple transformations which have been
used in the tensor network literature (Stoudenmire and Schwab, 2016; Efthymiou et al.,
2019). More recently, other intensity based local feature maps such as wavelet transforms
have been attempted for 1D signal classification in Reyes and Stoudenmire (2020). While we
use the local map in Equation (2) for 2D data and squeeze operation based local map for 3D
data, experiments on other possible local feature maps were also performed. For instance, we
experimented with jet based feature maps (Larsen et al., 2012) that compute spatial gradi-
ents at multiple scales, and also an MLP based local feature map acting on individual pixels.
Both these local feature maps did not yield any considerable performance improvement and
to adhere to existing tensor network literature we used the simple sinusoidal feature maps
which also do not have additional hyperparameters.

6.4 Comparison with Neural Networks

Feed-forward neural networks: The class of tensor network models adapted for machine
learning tasks (Stoudenmire and Schwab, 2016; Efthymiou et al., 2019) are conceptually
most similar to feed-forward neural networks such as the MLP, as both classes of models
operate on vector inputs (see Figure 9). The difference, however, arises in the type of de-
cision boundaries optimised by each class of model as illustrated in Figure 1. MLP based
feed-forward networks obtain non-linear decision boundaries using several layers of neurons
and non-linear activation functions (such as sigmoid, ReLU etc.). Tensor network models,
including the proposed model, optimise linear decision boundaries in exponentially high di-
mensional spaces without using any non-linear activation functions.
Convolutional neural networks: LoTeNet uses MPS blocks on image patches and aggre-
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Figure 9: Conceptual comparison of a feedforward neural network such as an MLP with the
proposed LoTeNet model. Notice the functional correspondence between linear and MPS
layers, and non-linear activation functions and the squeeze operations between the MLP and
LoTeNet models, respectively. The input image is flattened to a vector to input to the MLP
model, whereas for the LoTeNet model we squeeze small image regions before flattening as
described in Section 3.1.

gates these tensor representations in a hierarchical manner to learn the decision rule. While
this could appear similar to the use of strided convolution kernels in CNNs, it is indeed
closer to feed-forward neural networks. The use of an MPS block per patch perhaps can be
interpreted as a form of strided convolution but only in how the local operation is performed
on each patch. The primary difference is in the weight sharing; the weights of MPS blocks
are not shared across the image. Each k × k image region has an MPS block acting on it.
This is indicated in Figure 6, where we report the number of MPS blocks used per layer.

6.5 Limitations and Future Work

The computation time reported in Table 2 shows it to be higher for LoTeNet (45.3s) com-
pared to the CNN (12.8s) or MLP (4.1s) baselines as efficient implementations of tensor
contractions are not natively supported in frameworks such as PyTorch. There are ongo-
ing efforts to further improve efficient implementations which can accelerate tensor network
operations (Fishman et al., 2020; Novikov et al., 2020). Considering that LoTeNet usually
converges between 10-20 epochs, the increase in computation time with the current imple-
mentation is not substantial as the model can be trained even on 3D data easily under an
hour.

One possible drawback of having a single hyperparameter β controlling the MPS approx-
imations is the lack of granular control of the model capacity. In the 2D OASIS experiments
(Table 2), we further investigated the lower average balanced accuracy score by trying out
different β values. This experiment revealed that LoTeNet was either under-fitting (β < 4)
or over-fitting (4 ≤ β ≤ 8) to the training set. This could be attributed to the fact that the
number of parameters grow quadratically with β and these discrete jumps make it harder
to obtain models of optimal capacity for some tasks.
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Another concern with tensor network based models is their tendency to be over param-
eterised as the number of parameters scale as {d · N · β2}. The linear dependency on the
number of pixels, N , for volumetric data results in a model with massive number of param-
eters at the outset which is further aggravated by the quadratic dependency on β. While in
our experiments, this has not had an adverse effect on the performance, we have observed
the model is capable of over-fitting on small training data quite easily. This can be a concern
when dealing with datasets with few samples.

One way of handling these problems would be to introduce weight-sharing between MPS
blocks at each layer so that the number of parameters can be reduced and controlled better.
A possible future work is to investigate the effect of sharing MPS blocks per layer and study
if equivariance to translation can be induced in tensor network based models (Cohen and
Welling, 2016).

Finally, the issue of extending LoTeNet type models beyond classification or regression
tasks to more diverse medical imaging tasks such as segmentation and registration are open
research questions waiting to be explored further. Early work on using tensor networks for
2D segmentation tasks was recently reported in Selvan et al. (2021).

7. Conclusion

We have presented a tensor network model for classification of 2D and 3D medical images, of
higher spatial resolutions. Using LoTeNet we have shown that aggregating MPS approxima-
tions on small image regions in a hierarchical manner retains global structure of the image
data. With experiments on three datasets we have shown such models can yield competi-
tive performance on a variety of classification tasks. We have measured the GPU memory
requirement of the proposed model and shown it to be a fraction of the memory utilisation
of state-of-the-art CNN based models when trained to attain comparable performance. Fi-
nally, we have demonstrated that a single model architecture with β = 5 (tuned on one of
the datasets) can perform well on other datasets also, which can be an appealing feature as
it reduces dataset specific architecture search.
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